Polynomial values in linear recurrences, II

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Definite Sums as Solutions of Linear Recurrences With Polynomial Coefficients

We present an algorithm which, given a linear recurrence operator L with polynomial coefficients, m ∈ N \ {0}, a1, a2, . . . , am ∈ N \ {0} and b1, b2, . . . , bm ∈ K, returns a linear recurrence operator L ′ with rational coefficients such that for every sequence h,

متن کامل

Hypergeometric Solutions of Linear Recurrences with Polynomial Coefficents

Let K be a field of characteristic zero . We assume that K is computable, meaning that the elements of K can be finitely represented and that there exist algorithms for carrying out the field operations . Let KN denote the ring of all sequences over K, with addition and multiplication defined term-wise . Following Stanley (1980) we identify two sequences if they agree from some point on . Forma...

متن کامل

Polynomial Recurrences and Cyclic Resultants

Let K be an algebraically closed field of characteristic zero and let f ∈ K[x]. The m-th cyclic resultant of f is rm = Res(f, x m − 1). A generic monic polynomial is determined by its full sequence of cyclic resultants; however, the known techniques proving this result give no effective computational bounds. We prove that a generic monic polynomial of degree d is determined by its first 2d+1 cy...

متن کامل

Diophantine Equations Related with Linear Binary Recurrences

In this paper we find all solutions of four kinds of the Diophantine equations begin{equation*} ~x^{2}pm V_{t}xy-y^{2}pm x=0text{ and}~x^{2}pm V_{t}xy-y^{2}pm y=0, end{equation*}% for an odd number $t$, and, begin{equation*} ~x^{2}pm V_{t}xy+y^{2}-x=0text{ and}text{ }x^{2}pm V_{t}xy+y^{2}-y=0, end{equation*}% for an even number $t$, where $V_{n}$ is a generalized Lucas number. This pape...

متن کامل

Linear Equations over Multiplicative Groups, Recurrences, and Mixing II

Let u1, . . . , um be linear recurrences with values in a field K of positive characteristic p. We show that the set of integer vectors (k1, . . . , km) such that u1(k1) + · · ·+ um(km) = 0 is p-normal in a natural sense generalizing that of the first author, who proved the result for m = 1. Furthermore the set is effectively computable if K is. We illustrate this with an example for m = 4. We ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 1986

ISSN: 0022-314X

DOI: 10.1016/0022-314x(86)90056-9